Solving the MHD equations by the space-time conservation element and solution element method
نویسندگان
چکیده
We apply the Space-Time Conservation Element and Solution Element (CESE) method to solve the ideal MHD equations with special emphasis on satisfying the divergence free constraint of magnetic field, i.e., ∇⋅B = 0. In the setting of the CESE method, four approaches are employed: (i) the original CESE method without any additional treatment, (ii) a simple corrector procedure to update the spatial derivatives of magnetic field B after each time marching step to enforce ∇⋅B = 0 at all mesh nodes, (iii) an constraint-transport method by using a special staggered mesh to calculate magnetic field B, and (iv) the projection method by solving a Poisson solver after each time marching step. To demonstrate the capabilities of these methods, two benchmark MHD flows are calculated (i) a rotated one-dimensional MHD shock tube problem, and (ii) a MHD vortex problem. The results show no differences between different approaches and all results compare favorably with previously reported data.
منابع مشابه
Modeling of the Hydrocracking Reactor by the CESE Method
In this article, the improved space-time conservation element and solution element (CESE) method are used to simulate the dynamic treatment of the hydrocracking reactor. The dynamic model consists of four lumps: vacuum gas oil (VGO), middle distillate, naphtha, and gas which is dissolved by this method. The offered method can solve the partial differential equations caused by the reactions insi...
متن کاملApplication of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)
A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...
متن کاملSolution of Wave Equations Near Seawalls by Finite Element Method
A 2D finite element model for the solution of wave equations is developed. The fluid is considered as incompressible and irrotational. This is a difficult mathematical problem to solve numerically as well as analytically because the condition of the dynamic boundary (Bernoulli’s equation) on the free surface is not fixed and varies with time. The finite element technique is applied to solve non...
متن کاملSolving nonlinear space-time fractional differential equations via ansatz method
In this paper, the fractional partial differential equations are defined by modified Riemann-Liouville fractional derivative. With the help of fractional derivative and fractional complex transform, these equations can be converted into the nonlinear ordinary differential equations. By using solitay wave ansatz method, we find exact analytical solutions of the space-time fractional Zakharov Kuz...
متن کاملA novel partial differential algebraic equation (PDAE) solver: iterative space-time conservation element/solution element (CE/SE) method
For solving partial differential algebraic equations (PDAEs), the space–time conservation element/solution element (CE/SE) method is addressed in this study. The method of lines (MOL) using an implicit time integrator is compared with the CE/SE method in terms of computational efficiency, solution accuracy and stability. The space–time CE/SE method is successfully implemented to solve PDAE syst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 214 شماره
صفحات -
تاریخ انتشار 2006